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~ ABSTRACT

\EN'Total time on test (TTT) plots provide a useful graphical
method for tentative identification of failure distribution
models. Identification is based on properties of the TTT
transform. New properties of the TTT transform dist: lbution
are obtained. 1In particular, it is shown that a non-IFRA
distribution may have an anti-starshaped transform. Hence,
TTIT transforms may only be useful for determining local

4 ‘ properties of the failure rate function and not the failure

' rate average function.
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GEOMETRY OF THE TOTAL TIME ON TEST TRANSFORM

by
Richard E. Barlow

1. INTRODUCTION

The geometry of the total time on test transform is helpful in inter-
preting total time on test data plots [cf. Barlow and Campo (1975)]. 1In
particular, it is possible to infer tentative probability distribution

models based on total time on test plots.

Let F be a failure distribution, i.e., F(0 ) =0 and F=1-F .

Define

F " (t)
H;l(t) = f F(x)ax 0<t
0

|A
=
-

the total time on test transform of F . It is easy to verify that, Hy ,
the inverse of H;l is a distribution function. Also, H has support

in [0,6] if 6 is the mean of F , since

Fia) -
f F(x)dx = fxdF(x) =0
0 0

by an integration by parts. It is easy to verify that if F(x) = 1 - e-x/e

then the corresponding Hp(x) = x/6 for 0 < x <6 . The result that
our transform carries the exponential distribution into the rectangular
distribution on [0,0] is important. It is easy to verify that in this

case Hyp <F ; i.e., F-lnp(x) is convex for 0 <x <0 .

’
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If F(x) =x for 0<x<1; i.e., F 4is uniform on [0,1] ,
then HF(x) =1-/1-2x for 0<x <%, since F has mean %

X
in this case. Again HF $F . In general H;]'F(x) = ff(u)du is

2 BRI
concave since F 1is nonincreasing. Hence, the inverse F IHF(X) is

convex for 0 < x < 6 and

Hp & F

for all F with F(0 ) = 0 .

f | As was proved in Barlow, Bartholomew, Bremner and Brunk (1972),

: total time on test data plots tend to the total time on test transform

of the underlying failure distribution as the sample size tends to infinity.
In order to interpret total time on test data plots, we need to understand

the relationship between F and its transform. The following table

summarizes the connections.

Total Time on Test
Life Distribution Hazard Function Transform Distribution

v oy M i
“ s WO
y Vb

F R = log F H‘F
‘ Exponential <= linear = linear
IFR = convex = convex
DFR *=> concave <«=> concave
E | | IFRA -=> starshaped = starshaped
: DFRA <> anti-starshaped => anti-starshaped
‘ . TABLE 1

{ Logical Connections Between Life Distributions,

|
|
|

Hazard Functions and TTT Transform Distributions
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A function g defined on [O,b) such that Eégl is nondecreasing

on [0,b) 1is said to be starshaped with respect to the origin. If
G(x) =1-e% , then F 1is IFRA (for increasing failure rate average

¢ lr (x) I

if and only if s is nondecreasing for 0 < x E.F- (1) . The

function G-lF(x) = R(x) 1is said to be starshaped with respect to the

origin. As the last two implications indicate, IFRA and DFRA distribution

families are not characterized by corresponding properties of the TTT

transform distribution. However IFR and DFR distribution families are

characterized by corresponding properties of the TTT transform distribution.
To verify the implications in the table for the IFR (DFR) case,

first assume F absolutely continuous with failure rate function, r .

If F is IFR (DFR), then

is decreasing (increasing) in x which implies H%l is concave (convex);
f.e:, HF is convex (concave). Conversely, if H;l is concave (convex),
the failure rate function is increasing (decreasing). To see this, note
that every IFR (DFR) distribution can be approximated arbitrarily closely
by an absolutely continuous IFR (DFR) distribution. Since the limit of

a sequence of concave (convex) transforms is concave (convex) on [0,1] ,
it follows that F 1is IFR (DFR) if and only if H;l is concave (convex).

The IFRA distributions govern the lifelength of coherent systems

with statistically independent components whose life distributions are

IFR (or, more generally, IFRA). [Birnbaum, Esary and Marshall (1966) or §

Barlow and Proschan (1975)]. They also arise in other reliability contexts.




For these reasons, we are interested in the transforms of IFRA distributions.

In the next section we show that if F is IFRA, then its transform dis-
Hp (x)

tribution, HF , is starshaped; i.e., is nondecreasing in

0 <x <68 . Unfortunately, the converse is not true.
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2. PRESERVATION OF PARTIAL ORDERINGS ON CLASSES OF FAILURE DISTRIBUTIONS

Let R(x) = -log F(x) be the hazard function of F as before and
let G(x) =1 -e * . Observe that G-lF(x) = R(x) so that if F is
IFR, G-lF(x) is convex on the support of F and conversely. If F

-1
te 1r0a, SR

is nondecreasing in x > 0 and conversely. This
leads to a partial ordering on the space of failure distributions which
we call "star ordering." Let F be the class of continuous distributions

on [0,) and {deg.}, the class of degenerate distributions.

Definition:
F1 5 F2 f.e., F1 is star ordered with respect to F2 if F1 4
FOIF. (x)

20K

F, € FU{deg.} and is nondecreasing in x for 0 < x < le(l)) :

According to this definition, every distribution in F is star
(o ]

ordered with respect to a degenerate distribution. Let Fa(x) Py e

for x >0 and a > 0 . It is easy to show that if 0 < @) <a,, then
a-

F <F . Since F_,A has failure rate ax - , it is clear that the
ay * al a

failure rate of F, 1is "increasing faster" than the failure rate of F, -

2 1
If 0<a<1, Fa is DFR. If a > 1 , Fu is IFR and Fl is exponential.
Definition:

Fl é F2 (i.e., Fl is convex ordered with respect to Fz if
Fl 5 Fz € FU {deg.} and F;lFl(x) is convex in x for 0 < x j_FIl(l)) >
It is not hard to show that c-ordering implies star ordering, but

not conversely. Our main theorem is that the TTT transform distribution

preserves both orderings.
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Theorem 2.1:

Let F. , F2 e F

1
(a) If Fl é Fz , then HFl é HFZ 3

(b) If P, £ F,, then Hl,l;bxl,z.

S e —

The following corollary provides the primary application of the

theorem.

Corollary 2.2:

If Fl » Fye F and Fl i Fz , then

B ()
(a) ) is nondecreasing in 0 <t <1 ;
Hy (t)
i 1
~1 -1
i HF (t) HF (t)
| (b) _i % _]2. for 0<tc<l.
HF (1) HF (1)
1 2
;?>: Proof of Corollary:
| HOH (x)
21
By Theorem 2.1, Part (b), HFI s HFZ i e e is

nondecreasing in 0 < x j_FIl(l) . Let t =H, (x) and Part (a) of
1
the corollary is immediate. (b) is a trivial consequence of (a).]|

Figures 1 and 2 are graphical plots of the scaled transforms of

gamma and Weibull distributions. They visually confirm Part (b) of

the corollary.
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Proof of Theorem 2.1:

-1
(a) Assume Fl é F2 . We wish to show HFZHF1(X) is convex in

0 <x < FI]' (1) . First assume F) and F, are absolutely continuous.
-1
% [Hr (")]
Then we need only show S H ' )| = 2 Il F,(u)du is
i y ax 'r, | U, &8 2

nondecreasing in 0 < x < F;]' (1) . Now

o VN

4 f F, (u)du= :
ax 2 oy
0 f2[1"2 H'Fl(")]

:—xHF (x) .
1

Let x = H;l(t) so that % = —I—:It—-— and :
1 fl[Fl (:)] a

<1
e _ fl[Fl (‘)]
x T 1-t

t'“rl (x) 1

&3
dH_ (x) £ |F (x)
F, 4 1[ 1 HFl ]

Hence Ty = ax = . T ) Y H‘F &)
1

3
But Fl é Fz implies 3

d

-1
dx 2 '1 -1
f2|F2 Fl(x)]
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11
# is nondecreasing in 0 < x < F;]' (1) . Since FIIH.’ (x) = t 1s nondecreasing
: 1
] in 0 <x < l?Il(l) » a change of variable completes the argument.
Since continuous distributions can be approximated arbitrarily closely

g by absolutely continuous distributions, the proof of part (a) is complete.
i

To prove (b) we will need the following fundamental lemma.

2.3: Fundamental Lemma

f If R() =0, 5%?1 is nondecreasing in x > 0 and 0 < N(x) <
{ 1 x
;! N(u)du , then
0 E
| j
.j i N(u)dR (u) ]
_ (2.1) e :
b ‘ I N(u)du
1 A

E is nondecreasing in x > 0 . [Note that if N(x) 1is nonincreasing, the

assumption on N(x) is automatically satisfied].

Proof:

3 | R can be approximated arbitrarily closely from below by positive

,.“’. ! ] linear combinations of simple functions of the form

Hence we need only verify the lemma for simple functions. The general

result follows from the Lebesgue monotone convergence theorem. For a

simple function, R
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X

f N(u)dR(u)
0
: .

fN(u)du

0

X
on(xo) + fN(u)du
*0

Hence, for x > xo

X

f N(u)dR(u)

0
x

fN(u)du
0

0
By assumption, N(xo) _<_;1—- ! N(u)du so that the lemma follows.ll

00

Theorem 2.1, Part (b):

Let R(x) = F;]'Fl(x) . By assumption, B—g—‘l is nondecreasing in

0<x < PIl(l) . Let N(u) = l-’l(u) y X = !Il(t) and substitute in (2.1)

to obtain

x
fN(u)du
0

X0

on(xo) -f N‘u)du

=1+ 0 .

X

fN(u)du

0

e peme—
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Fy ()
l-’l (u)dR(u)
0
FIl(t)

f il (u)du

0

()
Let v = leFl(u) = R(u) so that the numerator becomes f Fl(u)dR(u) =
: 0
w5 (t)
f 'fz (v)dv . It follows from the Fundamental Lemma that
0

=1
F, (t)

H;l(t) f fz (v)dv
2

0
n;; (t) FIl (t)

Fl (u)du
0

=1
(x)
e

is nondecreasing in 0 <t <1 or Ao is nondecreasing in

0<x< FIl(l) A

Hy §Hp -l

1 2

HF]. * %2 DOES NOT IMPLY Fl - F2

Let G(x) =1 -e * so that Hy(x) = x for O0<x<1. Itdis
easy to find examples such that HY 5 HG but F * G; i.e., F 1is not

IFRA. Note that for 0 < t <1,c--log(1-t1)-t

1 >0.

1

Hence

e




is not IFRA since

is decreasing for x > t. .

But

t

H () =

1

-1
HF (t)

is anti-starshaped; 1i.e., t

Hp 3 Hg -

The significance of this example is that an anti-starshaped total

is nonincreasing in 0 < t <1 so that

time on test plot is 70t necessarily evidence that F is IFRA.




‘
':;»:
P
|
£
&

15

3. A MEASURE OF IFRness

Figures 1 and 2 show scaled total time on test transformations

for various parametric families of failure distributions. In each case

a single shape parameter provides a measure of departure from exponentiality.
1
By Part (b) of Corollary 2.2, the area { H;l(u)du could also

L] o
provide a measure of IFRness since if F. < F and _" xdF, (x) = f xdF, (x) ,
L.ch=2 0 1 0 2
then

1 1
fﬂ;l(u)du z_fﬂ;l(u)du :
0 1 0 2

1 )
If F has mean 6 , then f B;l(u)du -fxdﬂl,(x) , 80 that the mean of
0 0

H‘F » the inverse of the transform of F provides a measure of the IFRness
of F.
6

{ xdHp (x) .

The following lemma provides an easy means for calculating

Lemma:

(]
If fxdF(x) < » . then
0

fdeF(x) = 2fx[1 - F(x)]dF(x) .
0 0

Proof:

o 1
Since fxdn.p(x) -‘gn;l(u)du » we integrate the latter by parts to
0

obtain

.y

I ————



1 1

1
fﬂ;l(u)du -fr‘l(u)du -ft(l - £)dF L ()
0 0

0

Integrate by parts again to obtain

1 1
-f -~ c)dr'l(t) =fr'1(u) (1 - 2u)du
0 0

so that

1 1 -
fl-l;l(t:)dt =2 f(l —OF tw)du = 2fx[1 - F(x)]dF(x)
0 0

0

by a change of variable. ||

Examples:

-0x)*
For F(x) =1 -e¢e with mean, say 6 ,
i & 1l/a
e‘/‘xdli.i.(:x) 1/2 2
0
For the gamma distribution
Tk k-1 -Au
r(x> .[ k-l)! dll, k-l,z, LY
0

with mean 6-%.
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by k-1
ljxd (x) = (i+k) o .
0) Hp 120 k ) vk

(-]
The numerical relationship between % { deF(x) and the shape ﬁ

parameter for Weibull and gamma distributions is shown in the following

table.




Weibull
a

TABLE 3.1

RELATIONSHIP BETWEEN MEASURES OF "IFRness"
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